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SUMMARY:
High-rise buildings have the potential for wind energy harvesting as earlier studies indicated that high wind speed re-
gions can be present above the roofs. Computational fluid dynamics (CFD) represents an attractive tool for estimating
the flow fields around high-rise buildings. High-fidelity Large Eddy Simulation (LES) and low-fidelity Reynolds-
averaged Navier-Stokes simulations (RANS) are the two possible choices for performing CFD computations. LES has
the potential to provide more accurate and reliable results than RANS. However, LES entails a much higher compu-
tational costs. In order to take advantage of the main benefits of these two CFD approaches, a multi-fidelity machine
learning (ML) framework is investigated to improve the prediction of velocity and turbulent intensity components over
the high-rise building for the entire wind rose. The main aim is to ensure the simulation accuracy while maintaining the
computational efficiency. The study explores the optimal machine learning setup considering aspects such as: domain
size, dominant features, number of training LES simulations, etc. The artificial neural network is shown to perform
best among considered machine learning models. The study also demonstrates the importance of data handling and
pre-processing techniques.
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1. INTRODUCTION
Wind power is one of the extensively used and fastest growing renewable energy sources. In
2021, the global wind power capacity was 743 GW, 14% more than the previous year (Lee and
Zhao, 2021). Particularly, the use of wind turbines in urban environments has attracted increasing
attention (Stathopoulos et al., 2018). In practice, due to the complexity of the heterogeneous
terrain, wind tends to be more turbulent and less predictable in urban areas. This causes inevitable
challenges for wind energy potential assessment.

The traditional way to access the wind energy potential relies on the atmospheric boundary layer
wind tunnels. However, in recent years, computational fluid dynamics (CFD) has successfully
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provided a way to determine flow patterns and has contributed to understanding the wind flow
above buildings. However, routine use of CFD still requires significant progress to capture the
right balance between the accuracy of the results and the efficiency.

This study investigates a multi-fidelity machine learning framework to improve the prediction of
velocity and turbulent intensity components over the high-rise building for the entire wind rose. It
aims ensuring the simulation accuracy while maintaining the computational efficiency, by relating
a large number of low-fidelity RANS simulations to a small number of high-fidelity LES simu-
lations. The main question tackled in this study is ’What data should be used?’. Thus, the study
provides several optimisation studies that deals with accessing the dominant features (i.e. input
ML variables), accessing the optimal size of the ML training domain and most importantly, deter-
mining the number of costly LES simulations needed for the training. This multi-fidelity machine
learning framework will be used to access the wind energy harvesting potential over the isolated
high-rise building.

2. COMPUTATIONAL FLUID DYNAMICS MODELS
The considered flat roof high-rise building case is related to the wind tunnel tests presented in
(Hemida et al., 2020). The model has a square cross-section with edges B = 133.33mm, and the
height of the building is H = 400mm.

All RANS simulations are performed with the same domain and grid. The domain size is L×B×
H = 6.8× 6.8× 1.6m, where the height corresponds to the height of the wind tunnel. The up-
stream length is 5.8H and downstream length is 10.8H. The structured grid containing 0.9 million
hexahedral cells is used. Different wind directions are obtained by modifying velocity compo-
nents imposed at the inflow. The inlet boundary conditions are modeled to match the respective
incident wind tunnel profiles. The 3D steady RANS equations are solved in combination with
the k −ω−SST model. The SIMPLE algorithm is used for pressure-velocity coupling, and the
discretization is done using second-order numerical schemes.

The computational domain for LES is a full numerical representation of the wind tunnel, as shown
in Fig. 1 a). The domain size is L×B×H = 13.5× 1.8× 1.6m, where the height corresponds
to the height of the wind tunnel. The final grid of the simulation has around 27 million cells.
Dirichlet conditions on the velocity field with 15m/s are specified at the inlet, while the outlet
is treated as a pressure-outlet with a constant relative pressure equal to zero and a zero-gradient
boundary condition for the other flow variables. All LES simulations are performed using PISO
velocity-pressure coupling scheme. The validation of the LES simulations is conducted using
available experimental data (Hemida et al., 2020) and it is presented in (Kostadinović-Vranešević
et al., 2022). All simulations (RANS and LES) are performed using open-source code OpenFOAM
(controle-volume based method).

3. MACHINE LEARNING METHOD
The considered machine learning algorithms are support vector regression, random forest, gradient
boosting, and the artificial neural network. To improve the model performance, hyperparameter
optimization is performed for each machine learning algorithm.



Output values of machine learning model are velocity components (Ux, Uy, Uz) and turbulence
intensity components (Ix, Iy, Iz) as well as the global turbulence intensity It above the roof of the
high-rise building. Thus, respective and available RANS values are taken as independent input
variable, i.e. features. This includes: Ux,RANS, Uy,RANS, Uz,RANS and It . Besides other relevant data
that might affect the flow field above the high-rise building are also explored, such as: the normal-
ized height-dependent incident velocity magnitude, the normalized height-dependent turbulence
kinetic energy, the mean pressure coefficient, non-dimensional pressure gradient, the spatial posi-
tion of the cells and the incident wind direction.

To optimize the machine learning dataset that considers the flow over the high-rise building, several
aspects needs to be considered:

• The size of the considered machine learning domain: Shrinking the size of the domain over
the high-rise building might seem counter-intuitive, as in general, machine learning algo-
rithms usually perform better with more data. However, if much of that data is irrelevant,
increasing data does not necessarily improve the model performance. Besides, filtering out
unnecessary data leads to more computationally efficient model as less training data reduces
the computational time.

• The number of features: Similarly as mentioned in the previous point, ambiguous features
from the training set ensures less noise during the training phase and improves the quality
of the model. Furthermore, less data demands less storage space and eases the difficulty of
optimizing a function with too many input variables. Thus, feature engineering can reduce
the error drastically and additionally can achieve faster training since the inferior features
are eliminated.

• The number of necessary training LES simulations: It can be expected that prediction ac-
curacy of the multi-fidelity framework increases as more results of the LES simulations are
used as training data. Yet, LES simulations are very computationally costly. Thus, the ma-
chine learning training dataset should consider the optimal, i.e. minimal, number of LES
simulations. To facilitate this goal, the full dataset is created that consists of the RANS and
LES simulations at 7 different wind directions: 0◦, 7.5◦, 15◦, 22.5◦, 30◦, 37.5◦, 45◦. Given
the symmetry of the building, these wind directions cover the entire wind rose.

4. RESULTS
The training of the machine learning algorithms is performed on the training dataset with two
extreme wind direction results {0◦,45◦}. Those trained machine learning models are then tested
for all the intermediate wind directions. Based on R2 values, it is noticed that the 15◦ test case
gave comparatively weaker predictions than other test cases. Tab. 1 presents the comparison based
on R2 values among the machine learning models after hyperparameter optimization for the 15◦

test case. One can see that the artificial neural network model outperforms the rest of the models.
Moreover, Tab. 1 shows that the artificial neural network model performs satisfactorily for all
velocity and turbulent intensity outputs expect Uz (as R2 > 0.8). Velocity profiles plotted in Fig.
1 show that all models give satisfactory results for the Ux and Uy outputs, where as they fail in
predicting Uz, as observed in Tab. 1.



Table 1. Test RMSE and R2 values of the selected models trained on {0◦,45◦} wind direction datasets and tested for
the 15◦ wind direction.

Models Support Vector Regression Random Forest Gradient Boosting Neural Network
R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Ux[m/s] 0.7364 0.1485 0.8259 0.1191 0.8254 0.1200 0.8300 0.1190
Uy[m/s] 0.9484 0.0506 0.9161 0.0661 0.9595 0.0472 0.9213 0.0630
Uz[m/s] 0.2488 0.1144 -1.6041 0.4369 -0.3825 0.1679 0.4611 0.0961

It [%] 0.7513 0.7461 0.7662 0.7384 0.8486 0.6090 0.8959 0.4825
Iv[%] 0.7750 0.7260 0.7767 0.7117 0.8432 0.6043 0.8499 0.5934
Iw[%] 0.5790 0.7431 0.6171 0.6474 0.7546 0.5573 0.8009 0.5109
Iu[%] 0.8017 0.9164 0.7720 0.9781 0.8654 0.7590 0.8711 0.7460

Figure 1. a) LES computational domain with the high-rise building; b) a comparison among LES and different ML
models trained on {0◦,45◦} wind direction datasets and tested for 15◦ wind direction. The velocity profiles related to

the point on the rooftop marked with the red dot.

The study will present the results of all mentioned optimisation procedures. In particular, it will
focus on exploring different ML tools to minimize the number of LES needed simulation for the
training.
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Kostadinović-Vranešević, K., Vita, G., Bordas, S. P. A., and Glumac, A. Š., 2022. Furthering knowledge on the flow

pattern around high-rise buildings: LES investigation of the wind energy potential. J. Wind Eng. Ind. Aerodyn 226.
Lee, J. and Zhao, F., 2021. Global wind report. https://gwec.net/global-wind-report-2022/.
Stathopoulos, T., Alrawashdeh, H., Al-Quraan, A., Blocken, B., Dilimulati, A., and Paraschivoiu, M., 2018. Urban

wind energy: Some views on potential and challenges. J Wind Eng Ind Aerodyn 179.

https://gwec.net/global-wind-report-2022/

	INTRODUCTION
	Computational Fluid Dynamics models
	Machine learning method
	Results

